

Advanced Ceotechnical Numerical Analysis 1. 飽和地盤の変形問題において満足すべき関係式
基本則: 質量保存則: 常に満足 (連続の式) 第に満足 (力の釣合い式) $\frac{\partial \dot{\sigma}_{ji}}{\partial x_{j}} = 0$
境界条件: 変位境界: $v_i^s = v_i^{s^*}$ (<i>S_v</i> 上において) 外力境界: $n_j \dot{\sigma}_{ij} = \dot{t}_i^*$ (<i>S_v</i> 上において)
初期条件: $x_i(\mathbf{X}, t=0) = x_i^0$ $\sigma_{ij}(\mathbf{X}, t=0) = \sigma_{ij}^0$
諸関係式: ひずみ速度~変位速度関係: $\hat{\epsilon}_{ij} = \frac{1}{2} \left(\frac{\partial v_i^s}{\partial x_j} + \frac{\partial v_j^s}{\partial x_i} \right)$ 応力の対称性: $\sigma_{ij} = \sigma_{ji}$
応力分担式: $\left[\dot{\sigma}_{ij}=\dot{\sigma}'_{ij} ight]$ 構成関係: $\left[\dot{\sigma}'_{ij}=D_{ijkl}\dot{c}_{kl} ight]$

Advanced Geotechnical Numerical Analysis
4. 有限要素定式化(8)
【D-matrixについて】
$\begin{bmatrix} \mathbf{K}_{m}^{e} \end{bmatrix} = \int_{V^{e}} \begin{bmatrix} \mathbf{B} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{D} \end{bmatrix} \mathbf{B} \end{bmatrix} dV$
$\begin{bmatrix} \dot{\sigma}'_{11} \\ \dot{\sigma}'_{22} \\ \dot{\sigma}'_{12} \end{bmatrix} = \begin{bmatrix} D_{1111} & D_{1122} & D_{1112} \\ D_{2211} & D_{2222} & D_{2212} \\ D_{1211} & D_{1222} & D_{1212} \end{bmatrix} \begin{bmatrix} \dot{\varepsilon}_{11} \\ \dot{\varepsilon}_{22} \\ \dot{\gamma}_{12} \end{bmatrix}$
ポイントは、上のように表すことができる構成関係(応力~ひずみ関係)であれば、 弾性、弾塑性など、材料の力学モデルにかかわらず、利用することができる。
3次元状態でも、同じ

